680 research outputs found

    Computing with Synchrony

    Get PDF

    How Chaotic is the Balanced State?

    Get PDF
    Large sparse circuits of spiking neurons exhibit a balanced state of highly irregular activity under a wide range of conditions. It occurs likewise in sparsely connected random networks that receive excitatory external inputs and recurrent inhibition as well as in networks with mixed recurrent inhibition and excitation. Here we analytically investigate this irregular dynamics in finite networks keeping track of all individual spike times and the identities of individual neurons. For delayed, purely inhibitory interactions we show that the irregular dynamics is not chaotic but stable. Moreover, we demonstrate that after long transients the dynamics converges towards periodic orbits and that every generic periodic orbit of these dynamical systems is stable. We investigate the collective irregular dynamics upon increasing the time scale of synaptic responses and upon iteratively replacing inhibitory by excitatory interactions. Whereas for small and moderate time scales as well as for few excitatory interactions, the dynamics stays stable, there is a smooth transition to chaos if the synaptic response becomes sufficiently slow (even in purely inhibitory networks) or the number of excitatory interactions becomes too large. These results indicate that chaotic and stable dynamics are equally capable of generating the irregular neuronal activity. More generally, chaos apparently is not essential for generating the high irregularity of balanced activity, and we suggest that a mechanism different from chaos and stochasticity significantly contributes to irregular activity in cortical circuits

    Stable Irregular Dynamics in Complex Neural Networks

    Full text link
    For infinitely large sparse networks of spiking neurons mean field theory shows that a balanced state of highly irregular activity arises under various conditions. Here we analytically investigate the microscopic irregular dynamics in finite networks of arbitrary connectivity, keeping track of all individual spike times. For delayed, purely inhibitory interactions we demonstrate that the irregular dynamics is not chaotic but rather stable and convergent towards periodic orbits. Moreover, every generic periodic orbit of these dynamical systems is stable. These results highlight that chaotic and stable dynamics are equally capable of generating irregular activity.Comment: 10 pages, 2 figure

    Anreizsysteme zur Verbesserung der Wissensteilung in Unternehmen

    Get PDF
    Mit dem Übergang der westlichen Industrienationen in eine Wissensgesellschaft ist das Wissen von Mitarbeitern als maßgeblicher Wettbewerbsfaktor identifiziert worden. Die gegenwĂ€rtige Forschung beschĂ€ftigt sich in diesem Bereich mit Fragestellungen, die fĂŒr eine wirkungsvolle Steuerung dieser neuen Ressource von Bedeutung sind. Gegenstand dieser Arbeit ist es, das Problem der Wissensteilung zwischen Unternehmenseinheiten theoretisch zu demonstrieren und mögliche LösungsansĂ€tze mit Hilfe von Anreizinstrumenten zu prĂ€sentieren. Dabei werden verhaltens- und motivationstheoretische AnsĂ€tze vorgestellt, mit deren Hilfe exemplarisch ein Anreizsystem fĂŒr die Wissensteilung aufgebaut wird.With the transformation of developed countries into knowledge societies the importance of employee knowledge has been identified as the decisive competitive factor.Current research within this field is dealing with questions which are relevant for a succesfull governance of this resource. The subject matter of this article is to demonstrate theoretically the problem of knowledge sharing between business units and to present solution approaches based on incentive instruments. Finally an exemplary incentive system is presented which is based on behavior and motivation theory

    Emission from quantum-dot high-ÎČ microcavities : transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    Get PDF
    The research is funded in part by the European Research Council under the Seventh Framework ERC Grant Agreement No. 615613 of the European Union, the German Research Foundation via the projects RE2974/5-1, Ka2318 7-1 and JA 619/10-3, and the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. CG and FJ gratefully acknowledge financial support from the German Science Foundation (DFG). FJ further acknowledges support from the German Federal Ministry of Education and Research (BMBF).Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high ÎČ-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low ÎČ-factor) cavity, that is, a sharp non-linearity in the input-output curve accompanied by noticeable linewidth narrowing, has to be reinforced by the equal-time second-order photon autocorrelation function to confirm lasing. The paper also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-ÎČ microcavities operating with quantum dots. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g(2)(0) versus intracavity photon number.Publisher PDFPeer reviewe

    Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species

    Full text link
    We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-ionization of He, the distribution of one electron is chiral, if the other electron is oriented like the molecular axis in the former case and if the electrons are distinguishable by their energy. In both scenarios, the circularly polarized photon defines a plane with a sense of rotation and an additional axis is defined by the CO molecule or one electron. This is sufficient to establish an unambiguous coordinate frame of well-defined handedness. To produce a chirally structured electron angular distribution, such a coordinate frame is necessary, but not sufficient. We show that additional electron-electron interaction or scattering processes are needed to create the chiral angular distribution

    GnRH Binding RNA and DNA Spiegelmers A Novel Approach toward GnRH Antagonism

    Get PDF
    AbstractMirror-image oligonucleotide ligands (Spiegelmers) that bind to the pharmacologically relevant target gonadotropin-releasing hormone I (GnRH) with high affinity and high specificity have been identified using the Spiegelmer technology. GnRH is a decapeptide that plays an important role in mammalian reproduction and sexual maturation and is associated with several benign and malignant diseases. First, aptamers that bind to D-GnRH with dissociation constants of 50–100 nM were isolated out of RNA and DNA libraries. The respective enantiomers of the DNA and RNA aptamers were synthesized, and their binding to L-GnRH was shown. These Spiegelmers bind to L-GnRH with similar affinity to that of the corresponding aptamers that bind to D-GnRH. We further demonstrated dose-dependent inhibition of GnRH-induced Ca2+ release in Chinese hamster ovary cells that were stably transfected with the human GnRH receptor

    Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold

    Full text link
    Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton scattering becomes an intriguing quantum phenomenon. Here we report a kinematically complete experiment on Compton scattering at helium atoms below that threshold. We determine the momentum correlations of the electron, the recoiling ion, and the scattered photon in a coincidence experiment finding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This finding links Compton scattering to processes as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7] where similar momentum patterns occur.Comment: 7 pages, 4 figure

    Diagnostic performance of 3D cardiac magnetic resonance perfusion in elderly patients for the detection of coronary artery disease as compared to fractional flow reserve

    Full text link
    OBJECTIVES: In patients of advanced age, the feasibility of myocardial ischemia testing might be limited by age-related comorbidities and falling compliance abilities. Therefore, we aimed to test the accuracy of 3D cardiac magnetic resonance (CMR) stress perfusion in the elderly population as compared to reference standard fractional flow reserve (FFR). METHODS: Fifty-six patients at age 75 years or older (mean age 79 ± 4 years, 35 male) underwent 3D CMR perfusion imaging and invasive coronary angiography with FFR in 5 centers using the same study protocol. The diagnostic accuracy of CMR was compared to a control group of 360 patients aged below 75 years (mean age 61 ± 9 years, 262 male). The percentage of myocardial ischemic burden (MIB) relative to myocardial scar burden was further analyzed using semi-automated software. RESULTS: Sensitivity, specificity, and positive and negative predictive values of 3D perfusion CMR deemed similar for both age groups in the detection of hemodynamically relevant (FFR 0.05 all). While MIB was larger in the elderly patients (15% ± 17% vs. 9% ± 13%), the diagnostic accuracy of 3D CMR perfusion was high in both elderly and non-elderly populations to predict pathological FFR (AUC: 0.906 and 0.866). CONCLUSIONS: 3D CMR perfusion has excellent diagnostic accuracy for the detection of hemodynamically relevant coronary stenosis, independent of patient age. KEY POINTS ‱ The increasing prevalence of coronary artery disease in elderly populations is accompanied with a larger ischemic burden of the myocardium as compared to younger individuals. ‱ 3D cardiac magnetic resonance perfusion imaging predicts pathological fractional flow reserve in elderly patients aged ≄ 75 years with high diagnostic accuracy. ‱ Ischemia testing with 3D CMR perfusion imaging has similarly high accuracy in the elderly as in younger patients and it might be particularly useful when other non-invasive techniques are limited by aging-related comorbidities and falling compliance abilities
    • 

    corecore